Resource Hub / Technical Literature Library / Fast Accurate LC-MS MS Method for Folate Deficiency Biomarkers in Plasma

Fast, Accurate LC-MS/MS Method for Folate Deficiency Biomarkers in Plasma

Featured Application: Folate Deficiency Biomarkers in Plasma on Raptor HILIC-Si

  • Strong retention on a Raptor HILIC-Si column prevents matrix interference.
  • Complete separation from phospholipids ensures accurate results in a quick, 5-minute analysis.
  • Divert matrix to waste to keep your MS source clean and reduce downtime for maintenance.

Folate deficiency is considered a risk factor for a wide range of human health problems, including neural tube defects in newborns, cardiovascular diseases, Alzheimer’s disease, and certain forms of cancer. Plasma levels of folic acid and its metabolites (5-formyl tetrahydrofolate and 5-methyltetrahydrofolic acid) are used as biomarkers to diagnose folate deficiency. However, LC-MS/MS methods for folate deficiency biomarkers in plasma can be very challenging because these small, polar compounds are not retained well on traditional reversed-phase LC columns. Retention can be improved using a HILIC method, but in this case, the column must provide strong enough retention to prevent coelution with the phospholipid components in the plasma sample matrix. Although a good sample preparation protocol will help, 100% removal of phospholipids is very difficult, and even low levels of phospholipids can interfere with target analytes, compromise quantitation, and contaminate the MS source.

Using a HILIC approach with a Raptor HILIC-Si column is a much better alternative for LC-MS/MS methods for folate deficiency biomarkers in plasma because you can quickly and completely separate the matrix interferences from the target analytes. The increased retention obtained on a Raptor HILIC-Si column ensures good separation of folate deficiency biomarkers from phospholipids and allows labs to accurately quantitate these important compounds, even at just 25–50 ng/mL, with no ion suppression from matrix interferences. In addition, more resolution between analytes and matrix components lets you divert matrix to waste, which keeps your MS cleaner longer. The LC-MS/MS method for folate deficiency biomarkers in plasma shown here allows folic acid, 5-formyl tetrahydrofolate, and 5-methyltetrahydrofolic acid to be accurately analyzed with no matrix interference in a fast, 5-minute analysis.