PLEASE NOTE: Due to a planned systems upgrade, purchase orders submitted after 10:00 a.m. ET, Friday, April 23, will not be processed until 8:00 a.m. ET, Monday, April 26. We apologize for the inconvenience.
Your web browser will no longer be supported by as of 30 June 2021.
To avoid any interruption in access or functionality, install a current-generation web browser now. Learn more.

Flame Retardants on my Mind and on Your Electronics and Your Furniture and….

  • Michelle Misselwitz
  • #Blogs
  • Share:

I recently returned from the Brominated Flame Retardant Workshop in Indianapolis, Indiana. Going to a conference that covers analytical, occurrence and fate, biological and toxicology really puts what Restek does and the products that we make into perspective. Being able to analyze flame retardants in biotic and abiotic matrices is only the first challenge. The analytical methodology and data is used to monitor the levels in humans and the environment, and that data is then used for toxicology studies. Finally, and hopefully, that data is used to form policy that will in turn protect the environment and human health. The BFR meeting covers each of these important links surrounding flame retardants and I always come home from that conference and think about the work that I do to hopefully help the analytical scientist, and the changes I can potentially make around my home and office to reduce exposure to flame retardants (and other persistent organic pollutants).

I enjoyed many of the presentations at the BFR workshop, but one in particular stood out because it is a real problem, but not one that I normally think about. Where do you send your old electronics? With the rapid pace of new technology there is now a rapid increase of electronics waste. Electronic waste (e-waste) recycling in concept is a good thing. We really don’t want all of that in our landfills and electronics contain many precious metals that can be re-used. However, as Li Li from The College of Environmental Sciences and Engineering, at Peking University presented, the process of recycling the e-waste is, in many cases, rudimentary at best. Much of our waste is being shipped to developing nations that use children for labor. The e-waste is being burned in open areas, often very close to where the working families are living. Burning the electronics and plastic casings that are coated with flame retardants and other chemicals creates a toxic smoke that contains lighter brominated diphenyl ether congeners (PentaBDE), dioxins and furans, mixed brominated and chlorinated dioxins and furans, polycyclic aromatic hydrocarbons and heavy metals (just to name a few).

Much of the e-waste recycling is done in or near residential homes and employs children to help sort and disassemble old electronics.