High-Throughput Multiresidue Pesticides Analysis by GC-MS/MS
- Proven and recommended, Rxi-5ms columns reliably separate pesticides with shared ion transitions.
- Exceptionally stable, low-bleed column ensures accurate results at trace levels.
- Pro EZGC chromatogram modeling software dramatically reduces method development time.
Using GC-MS/MS for multiresidue pesticides analysis makes it possible to analyze large numbers of pesticides at once due to the superior secondary separation of selected reaction monitoring (SRM). GC-MS/MS analysis also provides excellent sensitivity, allowing for limits of detection below 10 ppb, which is the typical maximum residue limit. However, comprehensive multiresidue pesticides methods still require reliable chromatographic separation of compounds that share ion transitions because those analytes cannot be distinguished by the MS/MS detector. Rxi-5ms columns contain an ideal stationary phase for this, one that reliably achieves essential chromatographic separations. In addition, these columns are ultra-low bleed, which can improve signal-to-noise ratios and mass spectral integrity. As shown in Figure 1, the combination of GC-MS/MS, and an Rxi-5ms column provides efficient separation, identification, and quantification of more than 200 pesticides.
Figure 1: Analysis of 200+ Pesticides on an Rxi-5ms Column by GC-MS/MS
Peaks | tR (min) | Conc. (µg/mL) | Mix | |
---|---|---|---|---|
1. | Allidochlor | 6.83 | 10 | 4 |
2. | Dichlobenil | 7.72 | 10 | 3 |
3. | Biphenyl | 8.24 | 10 | 3 |
4. | Mevinphos | 8.92 | 10 | 9 |
5. | 3,4'-Dichloroaniline | 8.95 | 10 | 3 |
6. | Etridiazole | 9.31 | 10 | 5 |
7. | Pebulate | 9.37 | 10 | 4 |
8. | N-(2,4-Dimethylphenyl)formamide | 9.63 | 10 | 4 |
9. | Tetrahydrophthalimide | 9.64 | 10 | 3 |
10. | Methacrifos | 10.00 | 10 | 8 |
11. | Chloroneb | 10.10 | 10 | 2 |
12. | 2-Phenylphenol | 10.17 | 10 | 7 |
13. | Pentachlorobenzene | 10.31 | 10 | 2 |
14. | Tecnazene | 11.42 | 10 | 3 |
15. | Propachlor | 11.51 | 10 | 4 |
16. | Diphenylamine | 11.63 | 10 | 3 |
17. | 2,3,5,6-Tetrachloroaniline | 11.70 | 10 | 3 |
18. | Cycloate | 11.8 | 10 | 4 |
19. | Chlorpropham | 12.02 | 10 | 7 |
20. | Ethalfluralin | 12.18 | 10 | 3 |
21. | Trifluralin | 12.40 | 10 | 3 |
22. | Benfluralin | 12.45 | 10 | 3 |
23. | Sulfotepp | 12.49 | 10 | 8 |
24. | Phorate | 12.59 | 10 | 9 |
25. | Diallate 1 | 12.6 | 10 | 4 |
26. | BHC, alpha- | 12.70 | 10 | 2 |
27. | Diallate 2 | 12.8 | 10 | 4 |
28. | Hexachlorobenzene | 12.90 | 10 | 2 |
29. | Dicloran | 12.99 | 10 | 3 |
30. | Pentachloroanisole | 13.02 | 10 | 2 |
31. | Atrazine | 13.29 | 10 | 5 |
32. | BHC, beta- | 13.36 | 10 | 2 |
33. | Clomazone | 13.36 | 10 | 4 |
34. | BHC, gamma- | 13.52 | 10 | 2 |
35. | Terbutylazine | 13.64 | 10 | 5 |
36. | Quintozene | 13.65 | 10 | 3 |
37. | Terbufos | 13.66 | 10 | 8 |
38. | Pentachlorobenzonitrile | 13.69 | 10 | 3 |
39. | Fonofos | 13.73 | 10 | 9 |
40. | Propyzamide | 13.73 | 10 | 4 |
41. | Profluralin | 13.76 | 10 | 3 |
42. | Pyrimethanil | 13.85 | 10 | 5 |
43. | Diazinon | 13.97 | 10 | 1 |
44. | Disulfoton | 14.05 | 10 | 9 |
45. | Fluchloralin | 14.06 | 10 | 3 |
46. | BHC, delta- | 14.09 | 10 | 2 |
47. | Terbacil | 14.11 | 10 | 5 |
48. | Chlorothalonil | 14.21 | 10 | 3 |
49. | Tefluthrin | 14.23 | 10 | 6 |
50. | Isazophos | 14.27 | 10 | 1 |
51. | Triallate | 14.28 | 10 | 4 |
52. | Endosulfan ether | 14.55 | 10 | 2 |
53. | Pentachloroaniline | 14.64 | 10 | 3 |
54. | Propanil | 14.82 | 10 | 4 |
55. | Dimethachlor | 14.87 | 10 | 4 |
56. | Acetochlor | 15.03 | 10 | 4 |
57. | Methyl parathion | 15.06 | 10 | 9 |
58. | Vinclozolin | 15.06 | 10 | 5 |
59. | Chlorpyrifos-methyl | 15.07 | 10 | 1 |
60. | Tolclofos-methyl | 15.17 | 10 | 8 |
61. | Transfluthrin | 15.18 | 10 | 6 |
62. | Heptachlor | 15.25 | 10 | 2 |
63. | Alachlor | 15.26 | 10 | 4 |
64. | Propisochlor | 15.35 | 10 | 4 |
65. | Metalaxyl | 15.38 | 10 | 7 |
66. | Fenchlorphos | 15.41 | 10 | 8 |
67. | Fenitrothion | 15.72 | 10 | 1 |
68. | Pirimiphos-methyl | 15.76 | 10 | 1 |
69. | Prodiamine | 15.78 | 10 | 3 |
70. | Linuron | 15.79 | 10 | 4 |
71. | Pentachlorothioanisole | 15.83 | 10 | 2 |
72. | Dichlofluanid | 15.90 | 10 | 3 |
73. | Malathion | 15.96 | 10 | 8 |
Peaks | tR (min) | Conc. (µg/mL) | Mix | |
---|---|---|---|---|
74. | Anthraquinone | 16.02 | 10 | 6 |
75. | Aldrin | 16.06 | 10 | 2 |
76. | Metolachlor | 16.1 | 10 | 4 |
77. | Fenthion | 16.15 | 10 | 8 |
78. | Chlorpyrifos | 16.21 | 10 | 1 |
79. | Parathion | 16.22 | 10 | 9 |
80. | Dichlorobenzophenone, 4,4'- | 16.26 | 10 | 2 |
81. | Triadimefon | 16.28 | 10 | 5 |
82. | Chlorthal-dimethyl | 16.33 | 10 | 7 |
83. | Fenson | 16.45 | 10 | 2 |
84. | MGK 264 1 | 16.56 | 10 | 5 |
85. | Bromophos-methyl | 16.60 | 10 | 8 |
86. | Diphenamid | 16.61 | 10 | 4 |
87. | Pirimiphos-ethyl | 16.71 | 10 | 1 |
88. | Isodrin | 16.72 | 10 | 2 |
89. | Cyprodinil | 16.77 | 10 | 5 |
90. | Isopropalin | 16.77 | 10 | 3 |
91. | MGK 264 2 | 16.82 | 10 | 5 |
92. | Chlorfenvinphos 1 | 16.87 | 10 | 8 |
93. | Metazachlor | 16.91 | 10 | 4 |
94. | Pendimethalin | 16.95 | 10 | 3 |
95. | Heptachlor epoxide | 16.97 | 10 | 2 |
96. | Penconazole | 16.97 | 10 | 5 |
97. | Chlozolinate | 17.05 | 10 | 7 |
98. | Tolylfluanid | 17.07 | 10 | 3 |
99. | Bromfenvinphos-methyl | 17.13 | 10 | 8 |
100. | Captan | 17.13 | 10 | 5 |
101. | Chlorfenvinphos 2 | 17.13 | 10 | 8 |
102. | Bioallethrin | 17.17 | 10 | 6 |
103. | Fipronil | 17.17 | 10 | 5 |
104. | Quinalphos | 17.21 | 10 | 1 |
105. | Triadimenol | 17.21 | 10 | 5 |
106. | Folpet | 17.28 | 10 | 5 |
107. | Procymidone | 17.34 | 10 | 5 |
108. | Chlorbenside | 17.37 | 10 | 2 |
109. | Triflumizole | 17.41 | 10 | 5 |
110. | Chlordane, trans- | 17.51 | 10 | 2 |
111. | Bromophos-ethyl | 17.58 | 10 | 8 |
112. | DDE, o,p'- | 17.62 | 10 | 2 |
113. | Paclobutrazol | 17.63 | 10 | 5 |
114. | Tetrachlorvinphos | 17.74 | 10 | 8 |
115. | Endosulfan I | 17.79 | 10 | 2 |
116. | Chlordane, cis- | 17.85 | 10 | 2 |
117. | Flutriafol | 17.90 | 10 | 5 |
118. | Nonachlor, trans- | 17.96 | 10 | 2 |
119. | Chlorfenson | 17.97 | 10 | 2 |
120. | Fenamiphos | 17.98 | 10 | 8 |
121. | Bromfenvinphos | 18.03 | 10 | 8 |
122. | Flutolanil | 18.07 | 10 | 4 |
123. | Iodofenfos | 18.10 | 10 | 8 |
124. | Prothiofos | 18.15 | 10 | 8 |
125. | Tricyclazole | 18.21 | 10 | 5 |
126. | Profenofos | 18.22 | 10 | 8 |
127. | Fludioxonil | 18.24 | 10 | 5 |
128. | Pretilachlor | 18.29 | 10 | 4 |
129. | DDE, p,p'- | 18.31 | 10 | 2 |
130. | Dieldrin | 18.37 | 10 | 2 |
131. | Oxadiazon | 18.4 | 10 | 4 |
132. | Myclobutanil | 18.46 | 10 | 5 |
133. | DDD, o,p'- | 18.50 | 10 | 2 |
134. | Oxyfluorfen | 18.51 | 10 | 3 |
135. | Flusilazole | 18.53 | 10 | 5 |
136. | Bupirimate | 18.59 | 10 | 5 |
137. | Nitrofen | 18.77 | 10 | 3 |
138. | Fluazifop-P-butyl | 18.84 | 10 | 7 |
139. | Endrin | 18.85 | 10 | 2 |
140. | Ethylan | 18.86 | 10 | 2 |
141. | Chlorfenapyr | 18.88 | 10 | 5 |
142. | Chlorthiophos 1 | 18.94 | 10 | 8 |
143. | Chlorobenzilate | 19.02 | 10 | 7 |
144. | Endosulfan II | 19.04 | 10 | 2 |
145. | Chlorthiophos 2 | 19.12 | 10 | 8 |
146. | DDD, p,p'- | 19.23 | 10 | 2 |
Peaks | tR (min) | Conc. (µg/mL) | Mix | |
---|---|---|---|---|
147. | DDT, o,p'- | 19.31 | 10 | 2 |
148. | Ethion | 19.32 | 10 | 8 |
149. | Nonachlor, cis- | 19.33 | 10 | 2 |
150. | Chlorthiophos 3 | 19.40 | 10 | 8 |
151. | Endrin aldehyde | 19.45 | 10 | 2 |
152. | Sulprofos | 19.58 | 10 | 8 |
153. | Triazophos | 19.59 | 10 | 9 |
154. | Carbophenothion | 19.78 | 10 | 8 |
155. | 4,4'-Methoxychlor olefin | 19.84 | 10 | 2 |
156. | Carfentrazone ethyl | 19.84 | 10 | 7 |
157. | Edifenphos | 19.88 | 10 | 8 |
158. | Norflurazon | 19.93 | 10 | 4 |
159. | Lenacil | 19.94 | 10 | 5 |
160. | Endosulfan sulfate | 19.97 | 10 | 2 |
161. | DDT, p,p'- | 20.04 | 10 | 2 |
162. | Hexazinone | 20.24 | 10 | 5 |
163. | 2,4'-Methoxychlor | 20.27 | 10 | 2 |
164. | Tebuconazole | 20.31 | 10 | 5 |
165. | Propargite | 20.42 | 10 | 5 |
166. | Resmethrin 1 | 20.43 | 10 | 6 |
167. | Captafol | 20.48 | 10 | 5 |
168. | Piperonyl butoxide | 20.50 | 10 | 9 |
169. | Resmethrin 2 | 20.55 | 10 | 6 |
170. | Nitralin | 20.69 | 10 | 3 |
171. | Iprodione | 20.88 | 10 | 5 |
172. | Endrin ketone | 20.97 | 10 | 2 |
173. | Pyridaphenthion | 20.99 | 10 | 1 |
174. | Tetramethrin 1 | 21.00 | 10 | 6 |
175. | Phosmet | 21.06 | 10 | 1 |
176. | Bromopropylate | 21.12 | 10 | 7 |
177. | EPN | 21.14 | 10 | 1 |
178. | Tetramethrin 2 | 21.14 | 10 | 6 |
179. | Bifenthrin | 21.15 | 10 | 6 |
180. | Methoxychlor | 21.25 | 10 | 4 |
181. | Fenpropathrin | 21.3 | 10 | 4 |
182. | Tebufenpyrad | 21.37 | 10 | 4 |
183. | Phenothrin 1 | 21.59 | 10 | 6 |
184. | Tetradifon | 21.68 | 10 | 2 |
185. | Phenothrin 2 | 21.71 | 10 | 6 |
186. | Phosalone | 21.89 | 10 | 1 |
187. | Azinphos-methyl | 21.90 | 10 | 1 |
188. | Leptophos | 21.94 | 10 | 8 |
189. | Pyriproxyfen | 21.97 | 10 | 5 |
190. | Mirex | 22.16 | 10 | 2 |
191. | Cyhalothrin, lambda- | 22.30 | 10 | 6 |
192. | Fenarimol | 22.47 | 10 | 5 |
193. | Acrinathrin | 22.51 | 10 | 6 |
194. | Pyrazophos | 22.58 | 10 | 1 |
195. | Azinphos-ethyl | 22.63 | 10 | 1 |
196. | Pyraclofos | 22.73 | 10 | 1 |
197. | Permethrin, cis- | 23.14 | 10 | 6 |
198. | Permethrin, trans- | 23.29 | 10 | 6 |
199. | Pyridaben | 23.3 | 10 | 4 |
200. | Coumaphos | 23.40 | 10 | 8 |
201. | Fluquinconazole | 23.41 | 10 | 4 |
202. | Prochloraz | 23.48 | 10 | 4 |
203. | Cyfluthrin 1 | 23.83 | 10 | 6 |
204. | Cyfluthrin 2 | 23.93 | 10 | 6 |
205. | Cyfluthrin 3 | 24.02 | 10 | 6 |
206. | Cyfluthrin 4 | 24.06 | 10 | 6 |
207. | Cypermethrin 1 | 24.19 | 10 | 6 |
208. | Cypermethrin 2 | 24.30 | 10 | 6 |
209. | Cypermethrin 3 | 24.39 | 10 | 6 |
210. | Cypermethrin 4 | 24.43 | 10 | 6 |
211. | Flucythrinate 1 | 24.43 | 10 | 6 |
212. | Etofenprox | 24.53 | 10 | 5 |
213. | Acequinocyl | 24.54 | 10 | 7 |
214. | Flucythrinate 2 | 24.66 | 10 | 6 |
215. | Fluridone | 24.92 | 10 | 5 |
216. | Fenvalerate 1 | 25.25 | 10 | 6 |
217. | tau-Fluvalinate 1 | 25.47 | 10 | 6 |
218. | Fenvalerate 2 | 25.48 | 10 | 6 |
219. | tau-Fluvalinate 2 | 25.53 | 10 | 6 |
220. | Deltamethrin | 26.09 | 10 | 6 |
Column | Rxi-5ms, 30 m, 0.25 mm ID, 0.25 µm (cat.# 13423) |
---|---|
Standard/Sample | GC multiresidue pesticide standard #1 (cat.# 32563) |
GC multiresidue pesticide standard #2 (cat.# 32564) | |
GC multiresidue pesticide standard #3 (cat.# 32565) | |
GC multiresidue pesticide standard #4 (cat.# 32566) | |
GC multiresidue pesticide standard #5 (cat.# 32567) | |
GC multiresidue pesticide standard #6 (cat.# 32568) | |
GC multiresidue pesticide standard #7 (cat.# 32569) | |
GC multiresidue pesticide standard #8 (cat.# 32570) | |
GC multiresidue pesticide standard #9 (cat.# 32571) | |
Diluent: | Toluene |
Conc.: | 10 µg/mL |
Injection | |
Inj. Vol.: | 1 µL splitless (hold 0.5 min) |
Liner: | Topaz, single taper inlet liner w/wool, 4.0 mm x 6.5 x 78.5 (cat.# 23447) |
Inj. Temp.: | 250 °C |
Oven | |
Oven Temp.: | 90 °C (hold 1 min) to 330 °C at 8.5 °C/min (hold 5 min) |
Carrier Gas | He, constant flow |
Flow Rate: | 1.4 mL/min |
Detector | TSQ8000 | |
---|---|---|
SIM Program: | 50-550 m/z | |
Transfer Line Temp.: | 280 °C | |
Source Temp.: | 325 °C | |
Solvent Delay Time: | 5 min | |
Tune Type: | PFTBA | |
Ionization Mode: | EI | |
Instrument | Thermo Trace GC | |
Sample Preparation | Individual standards were diluted with toluene to 10 ppm and analyzed in a short-cap, screw-thread vial (cat.# 21143) and capped with a short-cap, screw-vial closure (cat.# 24495). | |
Notes | Standards were analyzed individually and were overlaid for this chromatogram. Standards are also available as a kit: GC multiresidue pesticide standards kit (cat.# 32562). |
Some of the most challenging pesticides are closely eluting isomers and other compounds that share ions or ion transitions (Table I). Poor separation can affect automated integration, which can skew results and require time-consuming manual integrations. Further, if these compounds coelute completely, then identification and quantitation become impossible by MS/MS. To demonstrate the resolving power of Rxi-5ms columns for multiresidue pesticides in disparate matrices, samples were prepared in brown rice flour and oranges as follows and then analyzed on a Thermo TRACE GC with a TSQ8000 detector.
Brown Rice Flour Extracts
Five grams of brown rice flour was mixed with 10 mL of water. After a 60 second vortex, the brown rice flour was fortified at 10 ng/g with all residues from the GC multiresidue pesticides kit (cat.# 32562). The fortified brown rice flour suspension was shaken for 30 minutes. Extraction was performed using 10 mL of acetonitrile and the original unbuffered Q-sep QuEChERS salts (cat.# 25848). After centrifugation, the supernatant was removed and further cleaned up with pre-filled Q-sep QuEChERS dSPE tubes containing 150 mg MgSO4, 50 mg PSA, and 50 mg C18-EC (cat.# 26125).
Orange Extracts
Ten grams of homogenized orange was fortified at 10 ng/g with all residues from the GC multiresidue pesticide kit (cat.# 32562), mixed with 10 mL acetonitrile and two steel ball bearings (1/16''), and shaken for 10 minutes. Q-sep QuEChERS extraction salts for EN 15662 (cat.# 25849) were added, and the sample was shaken for 1 minute. The sample was centrifuged for 5 minutes, and the supernatant was removed and further cleaned up with prefilled Q-sep QuEChERS dSPE tubes containing 150 mg MgSO4, 50 mg PSA, and 50 mg C18-EC (cat.# 26125).
As shown in Figure 2, the Rxi-5ms column provides excellent resolution of several difficult pesticides. While benfluralin and trifluralin can be separated by MS/MS using different transitions, chromatographic resolution is advantageous here because it allows a shared main ion (m/z 264) to be used (Figure 2A). This is also true for the cyfluthrins and cypermethrins, where baseline chromatographic separation between the two groups of isomers was achieved (Figure 2D). In the case of compounds that share the same ion transitions, the selectivity of the Rxi-5ms column provided excellent chromatographic resolution of 4,4’-DDD and 2,4’-DDT (Figure 2B), as well as the permethrins (Figure 2C) and BHC isomers (Figure 2E).
Table I: SRM and Shared Ions for the Pesticides in Figure 2
Name |
tR | SRM 1 | SRM 2 | SRM 3 | Main Ions (shared in bold) |
||||||
Prec. | Prod. | CE | Prec. | Prod. | CE | Prec. | Prod. | CE | |||
Trifluralin | 12.36 | 306 | 160 | 23 | 306 | 206 | 12 | 306 | 264 | 8 | 306, 264, 43 |
Benfluralin | 12.42 | 292 | 160 | 20 | 292 | 206 | 12 | 292 | 264 | 8 | 292, 276, 264 |
4,4’-DDD | 19.17 | 237 | 165 | 22 | 235 | 165 | 24 | 235 | 199 | 12 | 237, 235, 165 |
2,4’-DDT | 19.25 | 237 | 165 | 22 | 235 | 165 | 21 | 265 | 199 | 16 | 237, 235, 165 |
cis-Permethrin | 23.04 | 183 | 153 | 12 | 163 | 127 | 6 | 183 | 168 | 10 | 183, 165, 163, |
trans-Permethrin | 23.19 | 183 | 153 | 14 | 163 | 91 | 13 | 163 | 127 | 6 | 183, 165, 163, |
Cyfluthrin | 24.20* | 226 | 206 | 10 | 163 | 91 | 14 | 163 | 127 | 6 | 226, 203, 163 |
Cypermethrin | 24.55* | 181 | 152 | 18 | 163 | 91 | 11 | 163 | 127 | 6 | 209, 181, 163 |
α-BHC | 12.68 | 219 | 183 | 8 | 181 | 145 | 13 | 217 | 145 | 18 | 219, 217, 183, 181 |
β-BHC | 13.34 | 219 | 183 | 8 | 181 | 109 | 27 | 181 | 145 | 15 | 219, 217, 183, 181 |
γ-BHC | 13.49 | 219 | 183 | 8 | 181 | 109 | 29 | 181 | 145 | 13 | 219, 217, 183, 181 |
δ-BHC | 14.06 | 219 | 183 | 8 | 181 | 109 | 28 | 181 | 145 | 13 | 219, 217, 183, 181 |
*The window for these transitions was one minute.
Prec – Precursor ion
Prod – Product ion
CE – Collision energy
Figure 2: Selected Transitions of Isomers and Compounds Sharing Ions
A) Trifluralin and Benfluralin at 10 ppb in Brown Rice Flour Extract B) 4,4’-DDD and 2,4’-DDT at 10 ppb in Brown Rice Flour Extract C) Permethrins at 10 ppb in Brown Rice Flour Extract D) Cyfluthrins and Cypermethrins at 10 ppb in Orange Extract E) BHC Isomers at 10 ppb in Brown Rice Flour Extract
Peaks | tR (min) | Conc. (ng/g) | Precursor Ion | Product Ion | Collision Energy | Mix | |
---|---|---|---|---|---|---|---|
1. | Trifluralin | 12.35 | 10 | 306 | 264 | 8 | 3 |
2. | Benfluralin | 12.43 | 10 | 292 | 264 | 8 | 3 |
3. | α-BHC | 12.70 | 10 | 181 | 145 | 13 | 2 |
4. | β-BHC | 13.33 | 10 | 181 | 145 | 15 | 2 |
5. | γ-BHC | 13.49 | 10 | 181 | 145 | 15 | 2 |
6. | δ-BHC | 14.05 | 10 | 181 | 145 | 13 | 2 |
7. | DDD, p,p'- | 19.17 | 10 | 235 | 165 | 24 | 2 |
8. | DDT, o,p'- | 19.25 | 10 | 235 | 165 | 24 | 2 |
9. | Permethrin, cis- | 23.04 | 10 | 183 | 168 | 10 | 6 |
10. | Permethrin, trans- | 23.19 | 10 | 183 | 153 | 14 | 6 |
11. | Cyfluthrins | 24.00-24.35 | 10 | 226 | 206 | 10 | 6 |
12. | Cypermethrins | 24.35-24.70 | 10 | 163 | 127 | 6 | 6 |
Column | Rxi-5ms, 30 m, 0.25 mm ID, 0.25 µm (cat.# 13423) |
---|---|
Standard/Sample | GC multiresidue pesticide standards kit (cat.# 32562) |
Diluent: | Toluene |
Injection | |
Inj. Vol.: | 1 µL splitless (hold 0.5 min) |
Liner: | Topaz, single taper inlet liner w/wool, 4.0 mm x 6.5 x 78.5 (cat.# 23447) |
Inj. Temp.: | 250 °C |
Oven | |
Oven Temp.: | 90 °C (hold 1 min) to 330 °C at 8.5 °C/min (hold 5 min) |
Carrier Gas | He, constant flow |
Flow Rate: | 1.4 mL/min |
Detector | TSQ8000 |
---|---|
Transfer Line Temp.: | 280 °C |
Source Temp.: | 325 °C |
Solvent Delay Time: | 5 min |
Tune Type: | PFTBA |
Ionization Mode: | EI |
Instrument | Thermo Trace GC |
Sample Preparation | Brown Rice Extract (shown in A, B, C, and E): 5 g of brown rice flour was mixed with 10 mL of water. After a 60 second vortex, the brown rice flour was fortified at 10 ng/g with all residues from the GC multiresidue pesticides kit (cat.# 32562). The fortified brown rice flour suspension was shaken for 30 minutes. Extraction was performed using 10 mL of acetonitrile and the original unbuffered Q-sep QuEChERS salts (cat.# 25848). After centrifugation, the supernatant was removed and further cleaned up with pre-filled Q-sep QuEChERS dSPE tubes containing 150 mg MgSO4, 50 mg PSA, and 50 mg C18-EC (cat.# 26125). Orange Extract (shown in D): 10 g of homogenized orange was fortified at 10 ng/g with all residues from the GC multiresidue pesticide kit (cat.# 32562), mixed with 10 mL acetonitrile and two steel ball bearings (1/16''), and shaken for 10 minutes. Q-sep QuEChERS extraction salts for EN 15662 (cat.# 25849) were added, and the sample was shaken for 1 minute. The sample was centrifuged for 5 minutes, and the supernatant was removed and further cleaned up with prefilled Q-sep QuEChERS dSPE tubes containing 150 mg MgSO4, 50 mg PSA, and 50 mg C18-EC (cat.# 26125). The extracts were analyzed in a short-cap, screw-thread vial (cat.# 21143) and capped with a short-cap, screw-vial closure (cat.# 24495). |
As demonstrated above, using an Rxi-5ms column together with GC-MS/MS is an effective combination in achieving high-quality qualitative and quantitative pesticides analysis. Critical separations are achieved through both the power of the MS/MS and—when ions or ion transitions are shared—through the high efficiency and chromatographic selectivity of the Rxi-5ms column. In addition to improving data accuracy, good chromatographic separation reduces manual integration, which saves time and allows increased sample throughput. Labs interested in additional time savings can also explore virtual method development and optimization using Restek’s Pro EZGC chromatogram modeling software (www.restek.com/EZGC). With this free online tool, methods for multiresidue pesticides analysis can be developed or modified in minutes on a computer instead of taking days of instrument time in the laboratory.