Optimized Volatiles Analysis Ensures Fast VOC Separations

By Michelle Misselwitz, Gary Stidsen, and Chris English

- Optimized analysis allows for 36 runs per 12-hour shift, increasing instrument productivity.
- Rxi®-624Sil MS column inertness gives sharper peaks and more accurate data.
- High temperature stability reduces bleed profile, resulting in lower detection limits.

Optimized methods for the analysis of volatile organic compounds (VOCs) can be time-consuming to develop because compound lists can be extensive and analytes vary significantly in chemical characteristics. For example, target compounds in EPA Method 8260 for solid waste matrices include volatiles that range from light gases (Freon®) to larger aromatic compounds (trichlorobenzenes). These differences make column selectivity, thermal stability, and inertness critical to resolving volatiles. Often, “624” type columns are chosen for their selectivity, but thermal stability is usually poor, which can result in phase bleed that decreases detector sensitivity. New Rxi®-624Sil MS columns offer reliable resolution of critical VOC pairs and also provide lower bleed and greater inertness than other columns. In order to provide optimized conditions for labs analyzing VOCs, we established parameters that ensure good resolution, while reducing downtime by syncing purge and trap cycles with instrument cycles. In addition, we present comparative data that demonstrate why Rxi®-624Sil MS columns are the best choice for volatiles analysis.

Resolve Critical Pairs and Reduce Downtime

In order to achieve desired separations and minimize downtime between injections, several critical pairs were chosen for computational modeling using Pro ezGC software. The temperature program initially determined by the software was 35 °C (hold 5 min.) to 120 °C @ 11 °C/min. to 220°C @ 20 °C/min. (hold 2 min.). While this provided the best resolution of critical pairs, it also extended the analysis time to 19 min. Since the purge and trap cycle time was 16.5 min., we tested other conditions to see if adequate resolution could be maintained, while using a faster instrument cycle time that more closely matched the purge and trap cycle time, in order to maximize sample throughput. In other calculations, the software suggested changing temperature ramps at 60°C; therefore, a program of 35°C (hold 5 min.) to 60°C @ 11 °C/min. to 220°C @ 20 °C/min. (hold 2 min.) was tested. This final program reduced instrument downtime by better synchronizing injection and analysis cycles, and also provided excellent resolution of volatile compounds (Figure 1). Testing of faster conditions determined that the initial hold of 5 minutes at 35°C was critical for the best separation of early eluting compounds, such as the gases, as well as a favorable elution of methanol between gas compounds.
Figure 1 Rxi®-624Sil MS columns resolve methyl ethyl ketone and ethyl acetate, a separation not obtained on other 624 columns.

Peaks	RT (min.)
1. Dichlorodifluoromethane (CFC-12) | 2.198 |
2. Chloromethane | 2.459 |
3. Vinyl chloride | 2.659 |
4. Bromomethane | 3.226 |
5. Chloroethene | 3.473 |
6. Trichlorofluoromethane (CFC-11) | 3.876 |
7. Diethyl ether (ethyl ether) | 4.440 |
8. 1,2-Dichloroethene | 4.909 |
9. 1,1,2-Trichloroethane (CFC-113) | 4.998 |
10. Acetone | 5.029 |
11. Isomethane | 5.281 |
12. Carbon disulfide | 5.323 |
13. Acetonitrile | 5.637 |
14. Allyl chloride | 5.715 |
15. Methyl acetate | 5.723 |
16. Methylene chloride | 5.981 |
17. tert-Butyl alcohol | 6.234 |
18. tert-tert-butyl ether (MTBE) | 6.509 |
19. trans-1,2-Dichloroethene | 6.512 |
20. 1,1-Dichloroethane | 7.51 |
21. Vinyl acetate | 7.939 |
22. 2-Hexanone | 8.193 |
23. 1,3-Dichloropropene | 10.904 |
24. Chloroprene | 7.429 |
25. Ethyl methyl ketone (TAME) | 9.421 |
26. 2-Butanone (MEK) | 8.193 |
27. n-Butyl alcohol | 6.234 |
28. 2,2-Dichloropropane | 8.193 |
29. Ethyl acetate | 8.265 |
30. Propanol | 8.276 |
31. Methyl acetate | 8.318 |
32. Methanol | 8.476 |
33. Bromochloromethane | 8.507 |
34. 1,2-Dichloropropane | 10.243 |
35. Trichloroethene | 9.976 |
36. Fluorobenzene | 9.598 |
37. 2-Butanone (MEK) | 8.193 |
38. Methacrylonitrile | 8.476 |
39. Methyl acrylate | 8.318 |
40. Propionitrile | 8.276 |
41. Ethyl acetate | 8.265 |
42. 1,2-Dichloroethane | 8.334 |
43. Isopropyl acetate | 9.340 |
44. 1,2-Dichloroethane | 9.334 |
45. tert-Butyl alcohol | 9.421 |
46. Fluorobenzene | 9.340 |
47. Isopropyl acetate | 9.340 |
48. tert-Butyl alcohol | 9.421 |
49. Fluorobenzene | 9.340 |
50. 1,2-Dichloroethane | 10.243 |
51. Trichloroethene | 9.767 |
52. 1,2-Dichloroethane | 10.243 |
53. tert-Butyl alcohol | 9.421 |
54. Fluorobenzene | 9.340 |
55. tert-Butyl alcohol | 9.421 |
56. tert-Butyl alcohol | 9.421 |
57. tert-Butyl alcohol | 9.421 |
58. Tolueno-D8 | 11.348 |
59. n-Butanol | 11.210 |
60. trans-1,2-Dichloroethane | 11.407 |
61. Ethyl acetate | 11.345 |
62. 1,1,2-Trichloroethane | 11.585 |
63. Tetrachloroethene | 11.682 |
64. 1,1-Dichloroethane | 11.729 |
65. 2-Hexanone | 11.769 |
66. Butyl acetate | 11.837 |
67. Dibromochloromethane | 11.921 |
68. 1,2-Dibromomethane (EDB) | 12.035 |
69. Chlorobenzene-d5 | 12.412 |
70. Chlorobenzene | 12.440 |
71. Ethylbenzene | 12.501 |
72. 1,1,1,2-Tetrachloroethane | 12.507 |
73. m-Xylene | 12.612 |
74. p-Xylene | 12.612 |
75. o-Xylene | 12.935 |
76. Styrene | 12.946 |
77. n-Amyl acetate | 13.018 |
78. Bromomethane | 12.118 |
79. Isopropylbenzene (cumen) | 13.226 |
80. cis-1,4-Dichloro-2-butene | 13.268 |
81. 4-Bromofluorobenzene | 13.385 |
82. 1,1,2,2-Tetrachloroethane | 13.456 |
Not all “624s” are Equivalent

While optimizing instrument conditions can improve sample throughput, obtaining adequate resolution depends largely on column selectivity, thermal stability, and inertness. Rxi®-624Sil MS columns are optimized across these parameters, and therefore provide reliable separation of critical VOCs.

Lower Bleed Means Improved Sensitivity and Longer Column Lifetime

While 624 type columns generally provide good selectivity for most volatiles, they are limited by their low thermal stability. Poor thermal stability results in phase bleed that can reduce column lifetime, decrease detector sensitivity (especially ion trap mass spectrometers), and interfere with the quantification of later eluting compounds. Rxi®-624Sil MS columns have the highest thermal stability and lowest bleed among 624 type columns due to the incorporation of phenyl rings in the polymer backbone (Table I, Figure 2). The conjugated ring system of this silarylene phase provides a more rigid structure that increases thermal stability compared to nonsilarylene phases.

Table I The Rxi®-624Sil MS column has the highest thermal stability of any 624 column.

<table>
<thead>
<tr>
<th>Column</th>
<th>Manufacturer</th>
<th>Highest Temperature Limit (Isothermal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rxi-624Sil MS</td>
<td>Restek</td>
<td>320 ºC</td>
</tr>
<tr>
<td>VF-624ms</td>
<td>Varian</td>
<td>300 ºC</td>
</tr>
<tr>
<td>DB-624</td>
<td>Agilent J&W</td>
<td>260 ºC</td>
</tr>
<tr>
<td>ZB-624</td>
<td>Phenomenex</td>
<td>260 ºC</td>
</tr>
</tbody>
</table>

Figure 2 The Rxi®-624Sil MS column has the lowest bleed of any column in its class and provides true GC/MS capability.

Bleed Comparison of Rxi®-624Sil MS and VF-624ms

Peaks
1. Fluorobenzene

Columns are of equivalent dimensions and were tested after equivalent conditioning.
Better Peak Shape Means More Accurate Results

Rxi*-624Sil MS columns are the most inert 624 column available. Figure 3 shows the differences between vendor columns using primary amines, which are good indicators of column activity. The unique Rxi* deactivation results in symmetric peaks with minimal tailing, which improves quantitative accuracy. Minimizing tailing is especially important with concentration techniques, such as purge and trap, since the act of desorbing analytes off of the packing material results in some tailing. If a column is not inert, additional tailing due to column activity can magnify this problem. The sharp, symmetric peaks seen on Rxi*-624Sil MS columns allow greater resolution, higher signal-to-noise ratios, and more accurate results for active volatiles such as alcohols (Figure 4).

Figure 3 Highly inert Rxi*-624Sil MS columns provide better peak shape and more accurate results for active compounds.

Table 1

<table>
<thead>
<tr>
<th>Peaks</th>
<th>Conc. (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Isopropylamine</td>
<td>100</td>
</tr>
<tr>
<td>2. Diethylamine</td>
<td>100</td>
</tr>
<tr>
<td>3. Triethylamine</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 3

Column

Rxi*-624SilMS, 30 m, 0.32 mm ID, 1.8 µm (cat.# 13870)

Sample

Diluent: DMSO

Conc.: 100 µg/mL

Injection

Inj. Vol.: 1 µL split (split ratio 20:1)

Liner: 5mm Single Gooseneck with Wool (cat.# 22973-200.1)

Inj. Temp.: 250 °C

Oven

Oven Temp: 50 °C (hold 1 min.) to 200 °C at 20 °C/min. (hold 5 min.)

Carrier Gas

He, constant flow

Linear Velocity

37 cm/sec

Detector

FID @ 250 °C

Instrument

Agilent/HP6890 GC
Figure 4 Obtain more accurate results for active volatiles, such as alcohols, by using highly inert Rxi®-624Sil MS columns.

Conclusions

Labs interested in optimizing resolution and sample throughput can adopt the conditions established here on Rxi®-624Sil MS columns to maximize productivity and assure accurate, reliable results.